Flow-Invariant Hypersurfaces in Semi-Dispersing Billiards

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flow-Invariant Hypersurfaces in Semi-Dispersing Billiards

This work results from our attempts to solve Boltzmann–Sinai’s hypothesis about the ergodicity of hard ball gases. A crucial element in the studies of the dynamics of hard balls is the analysis of special hypersurfaces in the phase space consisting of degenerate trajectories (which lack complete hyperbolicity). We prove that if a flow-invariant hypersurface J in the phase space of a semi-disper...

متن کامل

1 5 M ar 2 00 6 Flow - invariant hypersurfaces in semi - dispersing

This work results from our attempts to solve Boltzmann-Sinai's hypothesis about the ergodicity of hard ball gases. A crucial element in the studies of the dynamics of hard balls is the analysis of special hypersurfaces in the phase space consisting of degenerate trajectories (which lack complete hyperbolicity). We prove that if a flow-invariant hypersurface J in the phase space of a semi-disper...

متن کامل

Semi-dispersing billiards with an infinite cusp

Let f : [0,+∞) −→ (0,+∞) be a sufficiently smooth convex function, vanishing at infinity. Consider the planar domain Q delimited by the positive x-semiaxis, the positive y-semiaxis, and the graph of f . Under certain conditions on f , we prove that the billiard flow in Q has a hyperbolic structure and, for some examples, that it is also ergodic. This is done using the cross section correspondin...

متن کامل

1 Semi - dispersing billiards with an infinite

Let f : [0,+∞) −→ (0,+∞) be a sufficiently smooth convex function, vanishing at infinity. Consider the planar domain Q delimited by the positive x-semiaxis, the positive y-semiaxis, and the graph of f . Under certain conditions on f , we prove that the billiard flow in Q has a hyperbolic structure and, for some examples, that it is also ergodic. This is done using the cross section correspondin...

متن کامل

Scaling Rate for Semi-dispersing Billiards with Non-compact Cusps

We show that certain billiard tables with non-compact cusps are mixing with respect to the invariant infinite measure, in the sense of Krengel and Sucheston. Moreover, we show that the scaling rate is slower than a certain polynomial rate.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales Henri Poincaré

سال: 2007

ISSN: 1424-0637,1424-0661

DOI: 10.1007/s00023-006-0313-5